Rennat_2006
New member
- 20
- 16
- 3
- Location
- Idaho
Ive fallen victim to this one myself after my stock core leaking so bad i had no choice but to install a local parts store aluminum replacement. I honestly dont understand why there is a low output issue with these aluminum ones, obviously aluminum disapates heat better that copper but im my head im thinking this should be a positive thing in our situation here not the negative it has been shown to be. Ive got an idea im wanting to try to remedy the issue also but want some other members thoughts before doing so as to not harm anything else.
Heres how im looking at it...
Thinking about this as the engine coolant radiator to start with,Aluminum disapates heat better than copper, thats why aluminum radiators are so popular and tend to work better. In this case the airflow through the grill of the truck which then travels through the radiator pulls the heat out of the radiator and into the engine compartment which then goes out the fender liner openings, out below the engine, little out between hood and cowl, etc. This heat is not being harnessed for another purpose like we are trying to do with the heater core but principle is the same.
Heater core has airflow from the blower motor going into and through it then coming out into the heater box to be diverted to defrost or heater vents. Most of us that have had to install one of these aluminum cores now have low heat ouput to the vents be it defrost or heater. Why is that so with how well aluminum transfers/disapates heat? If we have the same temperature coolant (say 180*)going into the heater core be it an aluminum or a copper one and say the core temperature itself is 170-180* the airflow blowing through it should be "picking up" and disapating this heat as long as airflow is making it through the core and out which we know it is because i did not loose any airflow out the vents after my replacement. If airflow through the core had become restricted ld understand the low heat output as with the decrease of airflow at the vents.
Heres what im trying to figure out and hoping another member has this information.
1.) In changing from the copper core to the aluminum is the construction of the core internally different? Specifically thinking of these as a conventiinal radiator was the copper cores setup as say a "double pass" internal coolant flow routing verus these new aluminum just being a "single pass" and because of this coolant isnt being held in the core long enough to heat up the core itself to get the transfer of heat from the air passing through it? Again thinking of this as a engine radiator we have all heard of people upgrading from single to double or even triple pass radiators to make that coolant spend more time in the radiator with the airflow going across it to disapate that heat the coolant is carrying to help with engine overheating issues.
2.) What about some sort of restricter on the "return" hose out of the heater core going back to the engine or radiator wherever it goes essentially cutting down the flow rate some making the coolant spend more time inside of the heater core? The other question to go with this though would be how would this affect the rest of the cooling system of the truck is we were to cut back on the flow out of the core? If i had a coolant temp gauge on the blazer i would just go pinch the core outlet hose down some and test this theory but dont want to overheat some engine component by doing this.
I feel like im missing a piece of the puzzle here to fix our issue. The material of the core alone should not have made the heat output decrease as much as mine has. All of the late model vehicles ive worked on run aluminum cores and most have the same size feed and return size hoses which tells me they arent using a smaller hose on the core outlet to slow down the flow rate which may be the case in our setup with the slightly smaller hose. The same principles and basic designs apply with these later model cars and they have great heat output with aluminum cores unless the core itself becomes plugged internally.
Heres how im looking at it...
Thinking about this as the engine coolant radiator to start with,Aluminum disapates heat better than copper, thats why aluminum radiators are so popular and tend to work better. In this case the airflow through the grill of the truck which then travels through the radiator pulls the heat out of the radiator and into the engine compartment which then goes out the fender liner openings, out below the engine, little out between hood and cowl, etc. This heat is not being harnessed for another purpose like we are trying to do with the heater core but principle is the same.
Heater core has airflow from the blower motor going into and through it then coming out into the heater box to be diverted to defrost or heater vents. Most of us that have had to install one of these aluminum cores now have low heat ouput to the vents be it defrost or heater. Why is that so with how well aluminum transfers/disapates heat? If we have the same temperature coolant (say 180*)going into the heater core be it an aluminum or a copper one and say the core temperature itself is 170-180* the airflow blowing through it should be "picking up" and disapating this heat as long as airflow is making it through the core and out which we know it is because i did not loose any airflow out the vents after my replacement. If airflow through the core had become restricted ld understand the low heat output as with the decrease of airflow at the vents.
Heres what im trying to figure out and hoping another member has this information.
1.) In changing from the copper core to the aluminum is the construction of the core internally different? Specifically thinking of these as a conventiinal radiator was the copper cores setup as say a "double pass" internal coolant flow routing verus these new aluminum just being a "single pass" and because of this coolant isnt being held in the core long enough to heat up the core itself to get the transfer of heat from the air passing through it? Again thinking of this as a engine radiator we have all heard of people upgrading from single to double or even triple pass radiators to make that coolant spend more time in the radiator with the airflow going across it to disapate that heat the coolant is carrying to help with engine overheating issues.
2.) What about some sort of restricter on the "return" hose out of the heater core going back to the engine or radiator wherever it goes essentially cutting down the flow rate some making the coolant spend more time inside of the heater core? The other question to go with this though would be how would this affect the rest of the cooling system of the truck is we were to cut back on the flow out of the core? If i had a coolant temp gauge on the blazer i would just go pinch the core outlet hose down some and test this theory but dont want to overheat some engine component by doing this.
I feel like im missing a piece of the puzzle here to fix our issue. The material of the core alone should not have made the heat output decrease as much as mine has. All of the late model vehicles ive worked on run aluminum cores and most have the same size feed and return size hoses which tells me they arent using a smaller hose on the core outlet to slow down the flow rate which may be the case in our setup with the slightly smaller hose. The same principles and basic designs apply with these later model cars and they have great heat output with aluminum cores unless the core itself becomes plugged internally.